资源类型

期刊论文 363

年份

2023 20

2022 19

2021 20

2020 18

2019 28

2018 11

2017 9

2016 18

2015 8

2014 31

2013 22

2012 16

2011 18

2010 28

2009 27

2008 14

2007 14

2006 4

2005 10

2004 1

展开 ︾

关键词

钢箱梁 4

TRIP钢 3

三塔悬索桥 3

发展 3

可持续发展 3

低成本 2

创新 2

压力容器技术 2

双相钢 2

应用 2

悬索桥 2

整体沉放 2

新技术 2

析出强化 2

泰州大桥 2

疲劳 2

组合梁 2

苏通大桥 2

设计 2

展开 ︾

检索范围:

排序: 展示方式:

Structural behavior of intermediate length cold-formed steel rack columns with C-stitches

M. ANBARASU, Mahmud ASHRAF

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 937-949 doi: 10.1007/s11709-019-0528-4

摘要: This article presents an experimental and numerical investigation on the strength and performance of intermediate length rack column sections with C-stitches under axial compression. The test program consisted of 10 axial concentric compression tests on columns with and without C-stitches under pin end conditions for two different geometric lengths. Finite element (FE) models were developed using commercial FE package ABAQUS considering material and geometric nonlinearities as well as initial geometric imperfections. The elastic buckling properties of the section were calculated using readily available linear elastic buckling analysis tools based on Generalized Beam Theory (GBT) and Finite Strip Method (FSM). Obtained FE results were compared with those obtained experimentally, and once verified the developed FE modeling technique was used to carry out a parametric study to examine changes in structural response due to variations in length, depth and spacing of C-stitches. Observed influences of C-stitches on the behavior and resistance of the considered columns were carefully analyzed, and key design aspects are presented herein.

关键词: cold-formed steel columns     C-stitches     intermediate length columns     distortional buckling    

Hot-dip galvanizing of cold-formed steel hollow sections: a state-of-the-art review

Min SUN, Jeffrey A. PACKER

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 49-65 doi: 10.1007/s11709-017-0448-0

摘要: A good understanding of the effects of galvanizing on the short- and long-term behaviours of steel components is essential for structural design. This review paper is motivated by a series of recent reports on cracking in galvanized cold-formed tubular steel structures and the limitations of current steel product standards and steel design specifications in this field. The steel-related and galvanizing-related factors, different pre-galvanizing countermeasures for brittle cracking and the available technical documents are summarized. An extensive bibliography is provided as a basis for future research and development in this field.

关键词: cold-formed steel     hollow structural sections     hot-dip galvanizing     embrittlement     heat-treatment     residual stress     cracking    

Dynamic material performance of cold-formed steel hollow sections: a state-of-the-art review

Cameron B. RITCHIE, Jeffrey A. PACKER, Xiao-Ling ZHAO, Amin HEIDARPOUR, Yiyi CHEN

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 209-227 doi: 10.1007/s11709-017-0388-8

摘要: This paper presents a literature review focused on the material performance of cold-formed, carbon steel, hollow structural sections under impulsive (highly dynamic) loading. Impulsive loading, represented by impact and blast, is characterized by a very rapid, time-dependent loading regime in the affected members and materials. Thus, the effect of high-strain-rate loading is initially reviewed. Next the material toughness, an important energy-absorption property and one measure of a material’s ability to arrest fracture, is considered by means of studying the Charpy V-notch behavior. The response of hollow sections under axial and lateral impact loading is then reviewed. ??Studies of blast on hollow sections, most of which fall under the categories of contact/near-field loading or far-field loading are presented. Under large-scale field blast experiments, cold-formed hollow sections have shown excellent behavior. Software for modeling blast loading and structural response, the latter including single degree of freedom analysis and explicit finite element analysis, is described and discussed.

关键词: cold-formed steel     hollow structural sections     composites     impulsive loading     impact     blast     experimentation     analysis     material properties    

Development of realistic design fire time-temperature curves for the testing of cold-formed steel wall

Anthony Deloge ARIYANAYAGAM,Mahen MAHENDRAN

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 427-447 doi: 10.1007/s11709-014-0279-1

摘要: Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modern buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behavior in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modern residential buildings are proposed for the testing of LSF walls.

关键词: fire safety     standard fire curve     realistic design fire time-temperature curves     light gauge steel frame (LSF) walls     fire resistance rating     fuel load    

Experimental, analytical and numerical studies on concrete encased trapezoidally web profiled cold formedsteel beams by varying depth-thickness ratio

Divahar RAVI, Aravind Raj PONSUBBIAH, Sangeetha Sreekumar PRABHA, Joanna Philip SARATHA

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 930-946 doi: 10.1007/s11709-020-0652-1

摘要: Concrete encased with trapezoidally corrugated web profiled cold-formed steel beams are used worldwide to improve resistance toward fire and corrosion, higher load carrying capacity as well as significant increase in the bending stiffness by encasing concrete on the beam portion. The present work gives a detailed description on the experimental, analytical and numerical investigation on the flexural behavior of concrete encased trapezoidally corrugated web profiled cold-formed steel beams which were simply supported at both ends and subjected to two point symmetric loading. The flexural behavior of such structure has been experimentally tested to failure under pure bending. To find the effect of concrete encasement in the web, 12 experiments were conducted by two different series. Beams having three different web corrugation angles of 0°, 30°, and 45° with two different web depth-thickness ( / ) ratios of 60 and 80 were tested. Experimental results such as load-deflection relationship, ultimate capacity, load-strain relationship, moment-curvature curves, ductility and failure mode indices of the specimens are presented. From the static bending tests the concrete encased trapezoidally corrugated web beam showed improved moment carrying capacity, ductility behavior and the resistance to transverse deflections in comparison to concrete encased with plain web beam. Especially for the beams with concrete encased 30° trapezoidally corrugated web having ( / ) ratio 60 and 80, the loading capacity was improved about 54% and 67.3% and the ductility also increased about 1.6 and 3.6 times, when compared to concrete encased beams with plain web. This research should contribute to the future engineering applications on seismic resistant structures and efficient usage of concrete encased with cold-formed steel beams by exhibiting its super elasto-plastic property. The analytical and numerical results showed good agreement with the experimental results at yield load, which indicates that the proposed analytical equations can be applied in predicting flexural strength accurately for such concrete encased trapezoidally corrugated web profiled cold-formed steel beams.

关键词: concrete encased beam     trapezoidally corrugated web     loading capacity     super elasto-plastic    

Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings

Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 628-639 doi: 10.1007/s11709-018-0501-7

摘要: The paper investigates the behaviors of recycled aggregate concrete-filled steel tubular (RACFST) columns under eccentric loadings with the incorporation of expansive agents. A total of 16 RACFST columns were tested in this study. The main parameters varied in this study are recycled coarse aggregate replacement percentages (0%, 30%, 50%, 70%, and 100%), expansive agent dosages (0%, 8%, and 15%) and an eccentric distance of compressive load from the center of the column (0 and 40 mm). Experimental results showed that the ultimate stresses of RACFST columns decreased with increasing recycled coarse aggregate replacement percentages but appropriate expansive agent dosages can reduce the decrement; the incorporation of expansive agent decreased the ultimate stresses of RACFST columns but an appropriate dosage can increase the deformation ability. The recycled coarse aggregate replacement percentages have limited influence on the ultimate stresses of the RACFST columns and has more effect than that of the normal aggregate concrete-filled steel tubular columns.

关键词: concrete filled steel tubes     recycled aggregate concrete     columns     expansive agent     eccentric load    

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 817-842 doi: 10.1007/s11709-022-0844-y

摘要: To research the axial compression behavior of steel reinforced recycled concrete (SRRC) short columns confined by carbon fiber reinforced plastics (CFRP) strips, nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading. Subsequently, the failure process and failure modes were observed, and load-displacement curves as well as the strain of various materials were analyzed. The effects on the substitution percentage of recycled coarse aggregate (RCA), width of CFRP strips, spacing of CFRP strips and strength of recycled aggregate concrete (RAC) on the axial compression properties of columns were also analyzed in the experimental investigation. Furthermore, the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study. The results show that the first to reach the yield state was the profile steel in the columns, then the longitudinal rebars and stirrups yielded successively, and finally RAC was crushed as well as the CFRP strips was also broken. The replacement rate of RCA has little effect on the columns, and with the substitution rate of RCA from 0 to 100%, the bearing capacity of columns decreased by only 4.8%. Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns, the maximum increase was 10.5% or 11.4%, and the ductility of columns was significantly enhanced. Obviously, CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns. On this basis, considering the restraint effect of CFRP strips and the adverse effects of RCA, the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed.

关键词: steel reinforced recycled concrete     CFRP strips     short columns     axial compression behavior     recycled aggregate concrete    

Modelling and experimental verification on concrete-filled steel tubular columns with L or T section

LU Xilin, LI Xueping, WANG Dan

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 163-169 doi: 10.1007/s11709-007-0017-z

摘要: Concrete-filled steel tubular columns with L or T sections were analyzed in this paper. According to the confining mechanism, the stress-strain constitutive model was put forward, and calculated results were compared with experimental records. After that, the hysteretic rules for the in-filled concrete were constructed, aiming at the analysis on the seismic behavior of composite members. The simulation analysis was performed by programming it in Fortran. The models in this paper can be applied in the program of time history analysis on tall buildings with concrete-filled steel tubular columns with L or T sections.

关键词: hysteretic     confining mechanism     Concrete-filled     in-filled     composite    

Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression

YANG Junjie, PENG Guojun, XU Hanyong

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 205-210 doi: 10.1007/s11709-008-0035-5

摘要: Based on some conclusions of two kinds of concrete-filled double skin steel tube (CFDSST) members with circular or square sections, a new kind of CFDSST with octagonal section, where the outer tube has an octagonal section and the inner tube has a circular section, is proposed in this paper. Behaviors of the CFDSST members with octagon section subjected to axial compression are investigated, and some curves of load-strain of steel tubes and confined concrete and the bearing capacity of members are obtained. It is indicated that the bearing capacity of the columns with octagonal section is larger than that with square section and is smaller than that with circular section, and the bearing capacity of members is related to the ratio of the straight side to the bevelled one. Based on the proper stress-strain relationship, a couple of numerical analyses are made using the finite element software named ANSYS. Finally, a simplified formula is proposed in the paper, and the numerical results agree well with the experimental results and the mathematical solutions. The results are valuable for engineers.

关键词: mathematical     numerical     compression     stress-strain relationship     straight    

Performance study on T-stub connected semi-rigid joint between rectangular tubular columns and H-shapedsteel beams

Guochang LI, Hongping YU, Chen FANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 296-303 doi: 10.1007/s11709-013-0217-7

摘要: This paper investigates the performance of T-stub connected semi-rigid joint of rectangular tubular columns and H-shaped steel beams. The finite element analysis software ABAQUS is used to analyze the nonlinear performance of the joint under monotonic loading. Meanwhile, the dimensions of T-stub, column and beam are considered as analytic parameters to discuss the performance of the joint. The analysis shows that the thickness and the length of T-stub webs, the height of beam section, bolt diameter, shear connector and the preloaded force affect the performance of the joint largely, and the thickness of the steel tube, the thickness and length of T-stub flange, bolt spacing have relatively little influences on the performance of the joint. The research results indicate that this joint is semi-rigid joint.

关键词: rectangular tubular columns     T-stub     semi-rigid     nonlinear finite element analysis     moment-rotation curves    

Experimental research on self-stressing and self-compacting concrete filled steel tube columns subjected

Chengkui HUANG, Zuoqing SHANG, Peng ZHANG,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 455-461 doi: 10.1007/s11709-009-0058-6

摘要: A total of fifteen self-stressing and self-compacting concrete (SSC) filled steel tube columns and three common self-compacting concrete filled steel tube (CFST) columns are tested under eccentric compression load to analyze the effect of initial self-stress on the compression behavior of CFSTs. The results show that the elastic working range of the columns is lengthened because of initial self-stress and it slightly decreases with the increase of load eccentricity ratio and slenderness ratio. Because of the initial self-stress, the concrete core is always under compression in three directions, so the compactness is enhanced and the ultimate bearing capacity obviously increases; but the initial self-stress hardly affects the failure mode of the columns.

关键词: increase     capacity     failure     CFSTs     CFST    

Truss-arch model for shear strength of seismic-damaged SRC frame columns strengthened with CFRP sheets

Sheng PENG, Chengxiang XU, Xiaoqiang LIU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1324-1337 doi: 10.1007/s11709-019-0557-z

摘要: Carbon fiber reinforced polymer (CFRP) materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete (SRC) frame structures. To investigate the shear strength of SRC frame columns strengthened with CFRP sheets, experimental observations on eight seismic-damaged SRC frame columns strengthened with CFRP sheets were conducted at Yangtze University and existing experimental data of 49 SRC columns are presented. Based on the existing experiments, the theories of damage degree, zoning analysis of concrete, and strengthening material of the column are adopted. To present the expression formula of the shear strength of SRC frame columns strengthened with CFRP sheets, the contributions of strengthening material and transverse reinforcement to shear strength in the truss model are considered, based on the truss-arch model. The contribution of arch action is also considered through the analysis of the whole concrete and that of the three zones of the concrete are also considered. The formula is verified, and the calculated results are found to match well with the experimental results. Results indicate that the proposed whole analysis model can improve the accuracy of shear strength predictions of shear seismic-damaged SRC frame columns reinforced with CFRP sheets.

关键词: carbon fiber reinforced polymer material     steel reinforced concrete frame column     seismic-damaged     trussed-arch model     shear strength    

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 760-772 doi: 10.1007/s11709-020-0618-3

摘要: As a typical compression member, the concrete-filled steel tube has been widely used in civil engineering structures. However, little research on recycled self-compacting concrete filled circular steel tubular (RSCCFCST) columns subjected to eccentric load was reported. In this study, 21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors. Recycled coarse aggregate replacement ratio, concrete strength grade, length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests. The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on eccentric load-bearing capacity of RSCCFCST columns. The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade. With increase of eccentric distance, the ductility of specimens increases while the bearing capacity decreases. Moreover, a phenomenological model of RSCCFCST columns is proposed, which exhibits versatile ability to capture the process during loading. The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.

关键词: concrete filled circular steel tubular columns     recycled self-compacting concrete     eccentric compression     recycled coarse aggregate replacement ratio     stress-strain relationship    

薄板坯连铸连轧铁素体+珠光体类型钢的强化与软化

傅杰,吴华杰,刘阳春

《中国工程科学》 2008年 第10卷 第4期   页码 65-72

摘要:

根据钢的综合强化理论,控制A1附近温度下钢中碳的析出,研究了HSLC钢的强化与软化问题。结果表明:薄板坯连铸连轧HSLC钢,强度还可进一步提高;通过回火缓冷,薄板坯连铸连轧HSLC钢ZJ330的σs从344 MPa降至225 MPa,能满足冷轧基板要求。讨论了有关铁素体轧制、超细晶粒钢以及一种可能的新型建筑材料等问题。

关键词: HSLC钢     强化     软化     冷轧基板     超级钢    

Dynamic response of precast segmental bridge columns under heavy truck impact

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 327-349 doi: 10.1007/s11709-023-0911-z

摘要: Considering the wide application of precast segmental bridge columns (PSBCs) in engineering practice, impact-resistant performance has gained significant attention. However, few studies have focused on PSBCs subjected to high-energy impacts caused by heavy truck collisions. Therefore, the behavior of PSBCs under a heavy truck impact was investigated in this study using high-fidelity finite element (FE) models. The detailed FE modeling methods of the PSBCs and heavy trucks were validated against experimental tests. The validated modeling methods were employed to simulate collisions between PSBCs and heavy trucks. The simulation results demonstrated that the engine and cargo caused two major peak impact forces during collision. Subsequently, the impact force, failure mode, displacement, and internal force of the PSBCs under heavy truck impacts were scrutinized. An extensive study was performed to assess the influence of the section size, truck weight, impact velocity, and number of precast segments on the impact responses. The truck weight was found to have a minor effect on the engine impact force. Damage was found to be localized at the bottom of the three segments, with the top remaining primarily undamaged. This parametric study demonstrated that larger cross-sections may be a preferred option to protect PSBCs against the impact of heavy trucks.

关键词: precast segmental bridge columns     heavy truck     collision     dynamic response    

标题 作者 时间 类型 操作

Structural behavior of intermediate length cold-formed steel rack columns with C-stitches

M. ANBARASU, Mahmud ASHRAF

期刊论文

Hot-dip galvanizing of cold-formed steel hollow sections: a state-of-the-art review

Min SUN, Jeffrey A. PACKER

期刊论文

Dynamic material performance of cold-formed steel hollow sections: a state-of-the-art review

Cameron B. RITCHIE, Jeffrey A. PACKER, Xiao-Ling ZHAO, Amin HEIDARPOUR, Yiyi CHEN

期刊论文

Development of realistic design fire time-temperature curves for the testing of cold-formed steel wall

Anthony Deloge ARIYANAYAGAM,Mahen MAHENDRAN

期刊论文

Experimental, analytical and numerical studies on concrete encased trapezoidally web profiled cold formedsteel beams by varying depth-thickness ratio

Divahar RAVI, Aravind Raj PONSUBBIAH, Sangeetha Sreekumar PRABHA, Joanna Philip SARATHA

期刊论文

Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings

Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

期刊论文

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

期刊论文

Modelling and experimental verification on concrete-filled steel tubular columns with L or T section

LU Xilin, LI Xueping, WANG Dan

期刊论文

Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression

YANG Junjie, PENG Guojun, XU Hanyong

期刊论文

Performance study on T-stub connected semi-rigid joint between rectangular tubular columns and H-shapedsteel beams

Guochang LI, Hongping YU, Chen FANG

期刊论文

Experimental research on self-stressing and self-compacting concrete filled steel tube columns subjected

Chengkui HUANG, Zuoqing SHANG, Peng ZHANG,

期刊论文

Truss-arch model for shear strength of seismic-damaged SRC frame columns strengthened with CFRP sheets

Sheng PENG, Chengxiang XU, Xiaoqiang LIU

期刊论文

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

期刊论文

薄板坯连铸连轧铁素体+珠光体类型钢的强化与软化

傅杰,吴华杰,刘阳春

期刊论文

Dynamic response of precast segmental bridge columns under heavy truck impact

期刊论文